首页 | 本学科首页   官方微博 | 高级检索  
     

基于直线截距直方图的Arimoto熵或Arimoto灰度熵的食品图像分割
引用本文:吴一全,龙云淋. 基于直线截距直方图的Arimoto熵或Arimoto灰度熵的食品图像分割[J]. 现代食品科技, 2016, 32(1): 164-169
作者姓名:吴一全  龙云淋
作者单位:(1.南京航空航天大学电子信息工程学院,江苏南京 210016)(2.江苏省乳品生物技术与安全控制重点实验室,江苏扬州 225009)(3.江苏省食品先进制造装备技术重点实验室,江南大学食品科学与技术国家重点实验室,江苏无锡 214122)(4.农业部东海海水健康养殖重点实验室,福建厦门 361021),(1.南京航空航天大学电子信息工程学院,江苏南京 210016)
基金项目:江苏省乳品生物技术与安全控制重点实验室资助项目(K13054);江苏省食品先进制造装备技术重点实验室开放课题资助(江南大学)项目(FM-201409);江南大学食品科学与技术国家重点实验室开放课题资助课题(SKLF-KF-201310);农业部东海海水健康养殖重点实验室基金资助(2013ESHML06);江苏高校优势学科建设工程资助项目(2012)
摘    要:食品生产中涉及到的食品种类繁多且必须满足国家相关食品安全标准,为此要求食品图像分割方法必须速度快、准确性高、普适性强。利用基于二维Arimoto熵或二维Arimoto灰度熵的阈值选取方法对食品图像进行分割,算法复杂度高,难以满足实时性要求。针对这一问题,提出基于直线截距直方图的Arimoto熵或Arimoto灰度熵的食品图像分割方法。首先给出直线截距直方图的定义,然后根据此定义建立图像的直线截距直方图,最后计算基于此直线截距直方图的不同灰度级的Arimoto熵或Arimoto灰度熵,当该熵达到最大时,对应的灰度级即为图像的最佳分割阈值。针对此方法,对多种食品图像进行了大量的试验,通过与现有的基于一维和二维Arimoto熵、Arimoto灰度熵的分割方法对比,发现本文方法在综合提升算法速度和改善分割效果上,性能更优。

关 键 词:食品图像分割;直线截距直方图;Arimoto熵;Arimoto灰度熵
收稿时间:2015-04-04

Line Intercept Histogram-based Arimoto Entropy or Arimoto Gray Entropy for Food Image Segmentation
WU Yi-quan and LONG Yun-lin. Line Intercept Histogram-based Arimoto Entropy or Arimoto Gray Entropy for Food Image Segmentation[J]. Modern Food Science & Technology, 2016, 32(1): 164-169
Authors:WU Yi-quan and LONG Yun-lin
Affiliation:(1.College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China) (2.Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225009, China) (3.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology,.State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China) (4.Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China) and (1.College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
Abstract:In food production, the numerous kinds of foods produced have to meet the applicable national food safety standards. Therefore, methods for food image segmentation should be rapid with high accuracy and high universality. In food image segmentation methods based on the threshold of two-dimensional Arimoto entropy or two-dimensional Arimoto gray entropy, the algorithm is highly complex. Hence, it is difficult to meet real-time requirements. To solve this problem, a method using line intercept histogram-based Arimoto entropy or Arimoto gray entropy for food image segmentation was proposed. First, the line intercept histogram was defined, which was followed by building of the line intercept histogram of images according to this definition. Finally, Arimoto entropies or Arimoto gray entropies of different gray levels in this line intercept histogram were calculated. When the maximum entropy was reached, the corresponding grayscale was determined to be the optimal image segmentation threshold. Several experiments were performed on different kinds of food images by using this method. Compared with the existing segmentation methods based on one-dimensional and two-dimensional Arimoto entropy and Arimoto gray entropy, the method proposed here can achieve better performance by increasing algorithm speed and improving segmentation results.
Keywords:food image segmentation   line intercept histogram   Arimoto entropy   Arimoto gray entropy
本文献已被 CNKI 等数据库收录!
点击此处可从《现代食品科技》浏览原始摘要信息
点击此处可从《现代食品科技》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号