首页 | 本学科首页   官方微博 | 高级检索  
     


Hardware and software platform for real-time processing and visualization of echographic radiofrequency signals
Authors:Scabia Marco  Biagi Elena  Masotti Leonardo
Affiliation:Dipt. di Elettronica a Telecomunicazioni, Universita degli Studi di Firenze, Italy;
Abstract:In this paper the architecture of a hardware and software platform, for ultrasonic investigation is presented. The platform, used in conjunction with an analog front-end hardware for driving the ultrasonic transducers of any commercial echograph, having the radiofrequency echo signal access, make it possible to dispose of a powerful echographic system for experimenting any processing technique, also in a clinical environment in which real-time operation mode is an essential prerequisite. The platform transforms any echograph into a test-system for evaluating the diagnostic effectiveness of new investigation techniques. A particular user interface was designed in order to allow a real-time and simultaneous visualization of the results produced in the different stages of the chosen processing procedure. This is aimed at obtaining a better optimization of the processing algorithm. The most important platform aspect, which also constitutes the basic differentiation with respect to similar systems, is the direct processing of the radiofrequency echo signal, which is essential for a complete analysis of the particular ultrasound-media interaction phenomenon. The platform completely integrates the architecture of a personal computer (PC) giving rise to several benefits, such as the quick technological evolution in the PC field and an extreme degree of programmability for different applications. The PC also constitutes the user interface, as a flexible and intuitive visualization support, and performs some software signal processing, by custom algorithms and commercial libraries. The realized close synergy between hardware and software allows the acquisition and real-time processing of the echographic radiofrequency (RF) signal with fast data representation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号