首页 | 本学科首页   官方微博 | 高级检索  
     


Differentiating between Models of Epothilone Binding to Microtubules Using Tubulin Mutagenesis, Cytotoxicity, and Molecular Modeling
Authors:Ruth A Entwistle  Rania S Rizk  Daniel M Cheng  Gerald H Lushington  Richard H Himes  Mohan L Gupta
Affiliation:Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045-7534 (USA).
Abstract:Microtubule stabilizers are powerful antimitotic compounds and represent a proven cancer treatment strategy. Several classes of compounds in clinical use or trials, such as the taxanes and epothilones, bind to the same region of β‐tubulin. Determining how these molecules interact with tubulin and stabilize microtubules is important both for understanding the mechanism of action and enhancing chemotherapeutic potential, for example, minimizing side effects, increasing solubility, and overcoming resistance. Structural studies using non‐polymerized tubulin or stabilized polymers have produced different models of epothilone binding. In this study we used directed mutagenesis of the binding site on Saccharomyces cerevisiae β‐tubulin to analyze interactions between epothilone B and its biologically relevant substrate, dynamic microtubules. Five engineered amino acid changes contributed to a 125‐fold increase in epothilone B cytotoxicity independent of inherent microtubule stability. The mutagenesis of endogenous β‐tubulin was done in otherwise isogenic strains. This facilitated the correlation of amino acid substitutions with altered cytotoxicity using molecular mechanics simulations. The results, which are based on the interaction between epothilone B and dynamic microtubules, most strongly support the binding mode determined by NMR spectroscopy‐based studies. This work establishes a system for discriminating between potential binding modes and among various compounds and/or analogues using a sensitive biological activity‐based readout.
Keywords:antitumor agents  drug design  epothilones  microtubules  tubulin
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号