首页 | 本学科首页   官方微博 | 高级检索  
     


The KlTrk1 gene encodes a low affinity transporter of the K+ uptake system in the budding yeast Kluyveromyces lactis
Authors:Miranda Manuel  Saldaña Carlos  Ramírez Jorge  Codiz Guadalupe  Brunner Aurora  Ongay-Larios Laura  Coria Roberto  Peña Antonio
Affiliation:Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F. México, Ap. Postal 70-242, 04510 México.
Abstract:Potassium uptake in Saccharomyces cerevisiae is mediated by at least two proteins, known as Trk1p and Trk2p. Direct involvement in cation movements has been demonstrated for Trk1p, which is the high affinity transporter. S. cerevisiae cells also show low affinity potassium uptake, perhaps mediated by Trk2p. Mutants lacking Trk1p, lose high affinity system, but when grown with moderate potassium concentrations, Trk2p seems to replace it. Mutants lacking both proteins are viable but require at least 10 mM K(+) in the medium to sustain growth. Here we report the cloning and characterization of a gene from Kluyveromyces lactis encoding a homologue of these two proteins. KlTrkp is a 1070 amino acid peptide that shows, overall, higher homology with Trk2p than with Trk1p, and its disruption gives rise to cells with deficient potassium transport and with an increased K(+) requirement for normal growth. Determination of kinetic parameters in the K. lactis wild-type and Kltrk1Delta strains, as well as in Sctrk1Delta Sctrk2Delta S. cerevisiae cells expressing KlTrk1, indicated that this is a low affinity component of a major potassium uptake system in K. lactis.
Keywords:potassium transport  Trk1  yeast  Kluyveromyces lactis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号