首页 | 本学科首页   官方微博 | 高级检索  
     


Multidisciplinary approach to materials selection for bipropellant thrusters using ablative and radiative cooling
Authors:A ADAMI  M MORTAZAVI  M NOSRATOLLAHI
Affiliation:1.Amirkabir University of Technology,Tehran,Iran;2.Space Research Institute,Tehran,Iran
Abstract:Reduction of costs is a main consideration in every space mission, and propulsion system is an important subsystem of those missions where orbital maneuvers are considered. Lighter propulsions with higher performance are necessary to reduce the mission costs. Bipropellant propulsions have been widely used in launch vehicles and upper-stages as well as deorbit modules because of better performances in comparison with other propulsion systems. Unfortunately heat transfer and thermal control limit bipropellant propulsion performance and maximum performance cannot be achieved. Well-known cooling methods such as regenerative and film cooling increase the cost using extra equipment and high temperature materials. In this paper, a new approach for cooling is presented based on combined ablative and radiative cooling. Governing equations are derived for two or three layers of thermal protection system (TPS) to optimize the TPS mass. The first layer is used as an ablative layer to control the temperature where the second and third layers are used as an insulator to control the heat fluxes. Proposed cooling method has been applied for two real bipropellant thrusters. According to the results, the presented algorithm can suitably predict the heat fluxes and satisfy the wall temperature constraint. Then, the algorithm has been used to minimize the wall temperatures as low as possible and replace high temperature materials (platinum alloy) with common materials (composite or steel). It is shown that selection of TPS materials affects the TPS mass and Isp simultaneously, but conversely. Best solution should be derived by trading off between structure temperature (cost), Isp (performance), and TPS thicknesses (geometry). Multidisciplinary approach to TPS and structure material selection of a bipropellant thruster is presented for a case study. It has been shown that mass and performance penalties of using TPS are acceptable, considering the advantages of using steel alloy instead of platinum alloy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号