首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructures of hot-rolled high-strength steels with significant differences in edge formability
Authors:R. D. K. Misra  S. W. Thompson  T. A. Hylton  A. J. Boucek
Affiliation:(1) Department of Chemical Engineering, University of Louisiana at Lafayette, 70504 Lafayette, LA;(2) Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401 Golden, CO;(3) LTV-Copperweld Tubular Products Company, 44131 Independence, OH;(4) LTV Steel, Technology Center, 44131, OH
Abstract:The relationship between microstructure and hole expansion was investigated for three industrial mill-processed steels with similar yield strength (about 525 MPa) and total elongation (about 25 pct). The nominal steel composition was (in mass pct) 0.1C, 1.4Mn, 0.1Si, 0.02Al, 0.04Nb, and 0.02Ti; any variations in composition or processing history were unintentional. The microstructures of all steels consisted of about 80 pct of proeutectoid ferrite and 20 pct of a carbon-enriched, high-hardness, low-temperature transformation product (LTTP). Despite these similarities, the hole-expansion values for the steels were 44, 74, and 115 pct. Detailed microstructural characterization revealed significant differences in the LTTPs of the three steels, as well as several important differences in the proeutectoid ferrite grains. Previously reported negative effects of large quantities of martensite, microstructural banding, and a high hardness ratio (LTTP/ferrite) were validated. Different hardness ratios correlated with differences in (1) dislocation substructures of proeutectoid ferrite grains (2) grain-size distribution, and (3) the fine structure of bainitelike/pearlitelike regions. Superior hole-expansion performance (or edge formability) was associated with a microstructure consisting of 78 pct of uniformly fine-grained proeutectoid ferrite and 22 pct of a bainitelike microconstituent, a minimum amount of microstructural banding, and a low hardness ratio. Tensile-bar fracture surfaces of a material with this microstructure showed the largest amount of microplasticity. At the time the work was carried out R.D.K. Misra was at LTV Steel, Technology Center.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号