首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of processing route on electrical and thermal conductivity of Al/SiC composites with bimodal particle distribution
Authors:L Weber  G Sinicco and J M Molina
Affiliation:(1) Laboratory of Mechanical Metallurgy, ?cole Polytechnique F?d?rale de Lausanne, EPFL, 1015 Lausanne, Switzerland;(2) Present address: Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apto 99, 03080 Alicante, Spain
Abstract:Al/SiC composites with volume fractions of SiC between 0.55 and 0.71 were made from identical tapped and vibrated powder preforms by squeeze casting (SC) and by two different setups for gas pressure infiltration (GPI), one that allows short (1–2 min) liquid metal/ceramic contact time (fast GPI) and the other that operates with rather long contact time, i.e., 10–15 min, (slow GPI). Increased liquid metal–ceramic contact time is shown to be the key parameter for the resulting thermal and electrical conductivity in the Al/SiC composites for a given preform. While for the squeeze cast samples neither dissolution of the SiC nor formation of Al4C3 was observed, the gas pressure assisted infiltration led inevitably to a reduced electrical and thermal conductivity of the matrix due to partial decomposition of SiC leading to Si in the matrix. Concomitantly, formation of Al4C3 at the interface was observed in both sets of gas pressure infiltrated samples. Longer contact times lead to much higher levels of Si in the matrix and to more Al4C3 formation at the interface. The difference in thermal conductivity between the SC samples and the fast GPI samples could be rationalized by the reduced matrix thermal conductivity only. On the other hand, in order to rationalize the thermal conductivity of the slow GPI a reduction in the metal/ceramic interface thermal conductance due to excessive Al4C3-formation had to be invoked. The CTE of the composites generally tended to decrease with increasing volume fraction of SiC except for the samples in which a large expansive drift was observed during the CTE measurement by thermal cycles. Such drift was essentially observed in the SC samples with high volume fraction of SiC while it was much smaller for the GPI samples.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号