首页 | 本学科首页   官方微博 | 高级检索  
     


High field transport in GaAs,InP and InAs
Authors:Kevin Brennan  Karl Hess
Affiliation:Department of Electrical Engineering and Coordination Science Laboratory, University of Illinois at Urban-Champaign, Urbana, IL 61801 U.S.A.
Abstract:Calculations of the steady state and transient electron drift velocities and impact ionization rate are presented for GaAs, InP and InAs based on a Monte Carlo simulation using a realistic band structure derived from an empirical pseudopotential. The impact ionization results are obtained using collision broadening of the initial state and are found to fit the experimental data well through a wide range of applied fields. In InP the impact ionization rate is much lower than in GaAs and no appreciable anisotropy has been observed. This is due in part to the larger density of states in InP and the corresponding higher electron-phonon scattering rate. The transient drift velocities are calculated under the condition of high energy injection. The results for InP show that higher velocities can be obtained over 1000–1500 Å device lengths for a much larger range of launching energies and applied electric fields than in GaAs. For the case of InAs, due to the large impact ionization rate, high drift velocities can be obtained since the ionization acts to limit the transfer of electrons to the satellite minima. In the absence of impact ionization, the electrons show the usual runaway effect and transfer readily occurs, thus lowering the drift velocity substantially.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号