首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应投影算法和修正核函数算法的混合支撑矢量机
引用本文:丁爱玲,刘芳,郭兰英. 基于自适应投影算法和修正核函数算法的混合支撑矢量机[J]. 西安电子科技大学学报(自然科学版), 2002, 29(4): 477-482
作者姓名:丁爱玲  刘芳  郭兰英
作者单位:[1]西安电子科技大学计算机学院,陕西西安710071 [2]长安大学信息工程学院,陕西西安710064
基金项目:国家自然科学基金资助项目 (60 0 73 0 5 3 )
摘    要:提出了基于自适应投影算法和修正核函数算法的混合支撑矢量机,根据修正核函数算法的正形投影变换,将问题映射到黎曼空间来增大分类面,从而提高支撑矢量机的分类精度,但其缺陷在于它帅两步优化实现的,因此增加了时间复杂度,基于此,混合支撑矢量机使用自适应投影算法对支撑矢量进行预选取,即通过投影从训练样本中选择部分样本作为中心矢量进行训练,实验结果表明:此方法在可分性得到显著提高的同时提高了速度。

关 键 词:混合支撑矢量机 自适应投影算法 修正核函数算法 黎曼空间 SVM 学习机
文章编号:1001-2400(2002)04-0477-05
修稿时间:2001-12-24

Hybrid support vector machine based on the adaptive projective algorithm and modifying kernel functions method
DING Ai ling ,,LIU Fang ,GUO Lan ying. Hybrid support vector machine based on the adaptive projective algorithm and modifying kernel functions method[J]. Journal of Xidian University, 2002, 29(4): 477-482
Authors:DING Ai ling     LIU Fang   GUO Lan ying
Affiliation:DING Ai ling 1,2,LIU Fang 1,GUO Lan ying 2
Abstract:A novel hybrid support vector machine based on the adaptive projective algorithm and modifying kernel functions method is proposed. The modifying kernel functions method can improve the performance of a support vector machine classifier by a conformal mapping, but the remarkable decrease in speed is its serious disadvantage. Therefore, the hybrid support vector machine is used to pre extract support vectors by the adaptive projective algorithm, so as to train the center vector chosen from the training data. It is shown that the separability between classes is raised and speed is greatly increased with this hybrid support vector machine.
Keywords:hybrid support vector machine  adaptive projective algorithm  modifying kernel fucntions method
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《西安电子科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西安电子科技大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号