首页 | 本学科首页   官方微博 | 高级检索  
     


Low wear metal sliding electrical contacts at high current density
Authors:Nicolas Argibay  W. Gregory Sawyer
Affiliation:Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 USA
Abstract:Operation of a low wear (2 × 10?5 mm3/(N-m)), low contact resistance copper sliding electrical contact was demonstrated. The wear rate of a lightly loaded copper–beryllium metal fiber sliding on a polished copper counterface was insensitive to (DC) current density values as great as 440 A/cm2 (in a brush positive or anodic configuration). Low wear and relatively low friction (μ  0.2 to 0.3) was achieved by operating the contact immersed in a liquid medium consisting of a hydrofluoroether with helium cover gas, inhibitingoxidationand providing cooling of the contact. Similar experiments performed in liquid mediums of ultrapure water and dilute (3%) hydrogen peroxide show an order of magnitude increase in wear rate and provide further insight on the role of electrochemically enhanced oxidation and the degraded contact resistance and tribological behavior of non-noble sliding electrical contacts in general. In contrast to high current density slidingin hydrofluoroether, an order of magnitude greater wear rate was observed for similar sliding conditionsin hydrogen peroxide or water without the aid of externally supplied electric potential. A conceptual model is proposed correlatingthe rate of brush wear to fatigue strength and electrochemically enhanced oxidation as a result of high current density transport through the contact. A mathematical expression was derived to calculate the approximate wear volume of a single fiber laterally contacting a slip-ring, based on direct measurement of the wear scar geometry.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号