首页 | 本学科首页   官方微博 | 高级检索  
     


Boosting Cell Performance of LiNi0.8Co0.15Al0.05O2 via Surface Structure Design
Authors:Junchao Zheng  Zhuo Yang  Alvin Dai  Linbo Tang  Hanxin Wei  Yunjiao Li  Zhenjiang He  Jun Lu
Abstract:Although the high energy density and environmental benignancy of LiNi0.8Co0.15Al0.05O2 (NCA) holds promise for use as cathode material in Li‐ion batteries, present low rate capabilities, and fast capacity fade limit its broad commercial applications. Here, it is reported that surface modification of NCA cathode (R‐3m) with 5 nm‐thick nanopillar layers and Fm‐3m structures significantly improves electrode structure, morphology, and electrochemical performance. The formation of nanopillar layers increases cycling and working voltage stability of NCA by shielding the host material from hydrofluoric acid and improves structural stability with the electrolyte. The modified NCA cathode exhibits an enhanced 89% capacity retention at a rate of 1 C over that of pristine NCA (75.2%) after 150 cycles and effectively suppresses working voltage fade (a drop of 0.025 V after 300 cycles) during repeated charge–discharge cycles. In addition, the diffusion barrier of Li ions in NCA crystals at 0.80 V is noticeably smaller than that of Li ions in pristine NCA (0.87 eV). These findings demonstrate that this unique surface structure design considerably enhances cycle and rate performance of NCA, which has potential applications in other Ni‐rich layered cathode materials.
Keywords:cathode materials  electrochemical performance  LiNi0  8Co0  15Al0  05O2  lithium‐ion batteries  structure design
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号