首页 | 本学科首页   官方微博 | 高级检索  
     


Peptide Nanotube‐Templated Biomineralization of Cu2−xS Nanoparticles for Combination Treatment of Metastatic Tumor
Authors:Yi Lai  Zhiai Xu  Xianli Hu  Li Lei  Lingling Li  Liang Dong  Haijun Yu  Wen Zhang
Abstract:1D peptide nanostructures (i.e., peptide nanotubes, PNTs) exhibit tunable chemo‐physical properties and functions such as improved tissue adhesion, increased cellular uptake, and elongated blood circulation. In this study, the application of PNTs as a desirable 1D template for biomineralization of Cu2?xS nanoparticles (Cu2?xS NPs, x = 1–2) is reported. Monodisperse Cu2?xS NPs are uniformly coated on the peptide nanotubes owing to the specific high binding affinity of Cu ions to the imidazole groups exposed on the surface of nanotubes. The Cu2?xS NP–coated PNTs are further covalently grafted with an oxaliplatin prodrug (Pt–CuS–PNTs) to construct a versatile nanoplatform for combination cancer therapy. Upon 808 nm laser illumination, the nanoplatform induces significant hyperthermia effect and elicits reactive oxygen species generation through electron transfer and Fenton‐like reaction. It is demonstrated that the versatile nanoplatform dramatically inhibits tumor growth and lung metastasis of melanoma in a B16‐F10 melanoma tumor‐bearing mouse model by combined photo‐ and chemotherapy. This study highlights the ability of PNTs for biomineralization of metal ions and the promising potential of such nanoplatforms for cancer treatment.
Keywords:biomineralization  cancer metastasis  combination therapy  Fenton reaction  peptide nanotubes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号