首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen‐Doped Graphene‐Buffered Mn2O3 Nanocomposite Anodes for Fast Charging and High Discharge Capacity Lithium‐Ion Batteries
Authors:Shuang Yuan  Weibin Chen  Lina Zhang  Zekun Liu  Jiaqi Liu  Tie Liu  Guojian Li  Qiang Wang
Abstract:Mn2O3 is a promising anode material for lithium‐ion batteries (LIBs) because of its high theoretical capacity and low discharge potential. However, low electronic conductivity and capacity fading limits its practical application. In this work, Mn2O3 with 1D nanowire geometry is synthesized in neutral aqueous solutions by a facile and effective hydrothermal strategy for the first time, and then Mn2O3 nanoparticle and nitrogen‐doped reduced graphene oxide (N‐rGO) are composited with Mn2O3 nanowires (Mn2O3‐GNCs) to enhance its volume utilization and conductivity. When used as an anode material for LIBs, the Mn2O3‐GNCs exhibit high reversible capacity (1350 mAh g?1), stable cycling stability, and good rate capability. Surprisingly, the Mn2O3‐GNC electrodes can also show fast charging capability; even after 200 cycles (charge: 10 A g?1; discharge: 0.5 A g?1), its discharge capacity can also keep at ≈500 mAh g?1. In addition, the Mn2O3‐GNCs also have considerable full cell and supercapacitor performance. The excellent electrochemical performances can be ascribed to the N‐rGO network structure and 1D nanowire structure, which can ensure fast ion and electron transportation.
Keywords:fast charging  high capacity  Li‐ion batteries  Mn2O3 nanowires  nitrogen doped‐reduced graphene oxide (rGO)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号