首页 | 本学科首页   官方微博 | 高级检索  
     


Subcritical crack growth at bimaterial interfaces: Part III. shear-enhanced fatigue crack growth resistance at polymer/metal interface
Authors:Zhang  Zhehua  Shang  J. K.
Affiliation:(1) Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 61801 Urbana, IL
Abstract:Fatigue crack growth along an Al/epoxy interface was examined under different combinations of mode-I and mode-II loadings using the flexural peel technique. Fatigue crack growth rates were obtained as a function of the total strain energy rate for GII/GI ratios of 0.3 to 1.4, achieved by varying the relative thickness of the outerlayers for the flexural peel specimen. Fatigue crack growth resistance of the interface was found to increase with increasing GII/GI ratio. Such a shear-enhanced crack growth resistance of the interface resulted in a gradual transition of crack growth mechanism from interfacial at the low GII/GI ratio to cohesive at the high GII/GI ratio. Under predominantly mode-I loading, the damage in the polymer took the form of crazing and cavitation. In contrast, laminar shear occurred under highly shear loading, resulting in a larger amount of plastic dissipation at the crack tip and improved fatigue crack growth resistance.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号