首页 | 本学科首页   官方微博 | 高级检索  
     

一维可压Navier-Stokes方程全局弱解的渐近性态
引用本文:宋红丽. 一维可压Navier-Stokes方程全局弱解的渐近性态[J]. 纺织高校基础科学学报, 2012, 25(3): 292-298
作者姓名:宋红丽
作者单位:西北大学 数学系,陕西 西安,710127
摘    要:研究一维情形下可压Navier-Stokes方程的自由边值问题.假设初始密度间断连续到真空.先通过建立一些先验估计式得到密度ρ的正上下界,再利用磨光初值法构造光滑逼近解.当粘性系数μ(ρ)=1+θρθ,θ〉0时,证明了弱解的全局存在性,进而讨论了全局弱解的渐近性态.

关 键 词:Navier-Stokes方程  自由边值  存在性  渐近性态

Asymptotic behavior of global weak solutions to 1D compressible Navier-Stokes equations
SONG Hong-li. Asymptotic behavior of global weak solutions to 1D compressible Navier-Stokes equations[J]. Basic Sciences Journal of Textile Universities, 2012, 25(3): 292-298
Authors:SONG Hong-li
Affiliation:SONG Hong-li(Department of Mathematics,Northwest University,Xi′an 710127,China)
Abstract:One-dimensional compressible Navier-Stokes equations with free boundary value problem is studied.The initial density is assumed to be connected to vacuum discontinuously.The positive upper and lower bound of the density ρ is obtained by using some priori estimates,and then smooth approximate solutions are constructed by defining the approximate initial data.The existence of global weak solutions is proved when the viscosity coefficient μ(ρ)=1+θρθ,θ>0.Moreover,asymptotic behavior of global weak solutions is discussed.
Keywords:Navier-Stokes equation  free boundary  existence  asymptotic behavior
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号