首页 | 本学科首页   官方微博 | 高级检索  
     

代价敏感的半监督Laplacian支持向量机
引用本文:万建武,杨明,陈银娟. 代价敏感的半监督Laplacian支持向量机[J]. 电子学报, 2012, 40(7): 1410-1415. DOI: 10.3969/j.issn.0372-2112.2012.07.020
作者姓名:万建武  杨明  陈银娟
作者单位:1. 南京师范大学计算机科学与技术学院,江苏南京 210046;南京师范大学数学科学学院,江苏南京210046
2. 南京师范大学计算机科学与技术学院,江苏南京,210046
基金项目:国家自然科学基金,江苏省自然科学基金重点重大专项,江苏省自然科学基金
摘    要:代价敏感学习是机器学习领域的一个研究热点.在实际应用中,数据集往往是不平衡的,存在着大量的无标签样本,只有少量的有标签样本,并且存在噪声.虽然针对该情况的代价敏感学习方法的研究已取得了一定的进展,但还需要进一步的深入研究.为此,本文提出了一种基于代价敏感的半监督Laplacian支持向量机.该模型在采用无标签扩展策略的基础上,将考虑了数据不平衡的错分代价融入到Laplacian支持向量机的经验损失和Laplacian正则化项中.考虑到噪声样本对决策平面的影响,本文定义了一种样本依赖的代价,对噪声样本赋予较低的权重.在7个UCI数据集和8个NASA软件数据集上的实验结果表明了本文算法的有效性.

关 键 词:代价敏感学习  半监督学习  Laplacian支持向量机
收稿时间:2011-05-26

Cost Sensitive Semi-Supervised Laplacian Support Vector Machine
WAN Jian-wu , YANG Ming , CHEN Yin-juan. Cost Sensitive Semi-Supervised Laplacian Support Vector Machine[J]. Acta Electronica Sinica, 2012, 40(7): 1410-1415. DOI: 10.3969/j.issn.0372-2112.2012.07.020
Authors:WAN Jian-wu    YANG Ming    CHEN Yin-juan
Affiliation:1(1.School of Computer Science and Technology,Nanjing Normal University,Nanjing,Jiangsu 210046,China;2.School of Mathematics Science,Nanjing Normal University,Nanjing,Jiangsu 210046,China)
Abstract:Cost sensitive learning is the hot research area in machine learning.In practical real applications,the datasets are usually class-imbalanced,most of the samples are unlabeled,only a few of the samples are labeled,and noise samples are existed.Although some progress has been made in cost sensitive learning for such situation,it needs further solved.For that we propose a semi-supervised Laplacian support vector machine based on cost sensitive learning.On the basis of label propagation,the proposed model integrates the misclassification costs considering class-imbalance into the hinge loss and Laplacian regularization of the Laplacian support vector machine.At the same time,considering the effect on the decision hypersphere of the noise samples,we define an example-dependent cost which makes the weights of noise samples lower.The experimental results on 7 UCI,8 NASA datasets demonstrate the superiority of our proposed algorithm.
Keywords:cost sensitive learning  semi-supervised learning  Laplacian support vector machine
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号