首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation
Authors:Naoto Tsubouchi  Yasuo Ohtsuka
Affiliation:

Research Center for Sustainable Materials Engineering, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan

Abstract:Pyrolysis of 10 coals with carbon contents of less than 80 wt%(daf) has been studied with a fixed bed quartz reactor to examine mainly nitrogen release from char-N without volatile matters. When temperature is raised from 1000 to 1350 °C, N2 yield increases but char-N decreases for all the coals used. There is a strong reverse correlation between N2 and char-N, which points out that most of N2 arises from char-N via solid phase reactions. NH3 is also formed from char-N at high temperatures of ≥1000 °C. In the pyrolysis of low rank coals, demineralization by HCl washing increases yields of tar-N, HCN and char-N, but decreases NH3 and N2. The addition of 3 wt% Ca to the demineralized coals shows almost the reverse effect. The XRD measurements after pyrolysis at 1000–1350 °C reveal that the Ca exists predominantly as CaO with the average crystallite size of 25–65 nm and promotes carbon crystallization. As the extent of crystallized carbon increases, N2 yield increases remarkably. It is likely that the highly dispersed CaO catalyzes efficiently conversion reactions of char-N to N2 in the process of carbon crystallization. The reaction mechanism is discussed in term of interactions between CaO particles and char-N.
Keywords:Coal pyrolysis  N2 formation  Carbon crystallization  Solid phase reaction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号