首页 | 本学科首页   官方微博 | 高级检索  
     

独立分量分析盲信号分离方法研究
引用本文:周存,程理丽,解静. 独立分量分析盲信号分离方法研究[J]. 无线电工程, 2012, 42(12): 30-32
作者姓名:周存  程理丽  解静
作者单位:河北远东通信系统工程有限公司,河北石家庄,050200
摘    要:盲源分离是指从多个相互独立的源信号的混合信号中分离出源信号来。独立分量分析法是盲源分离的一种新方法,由于其在语音信号处理、阵列信号处理、生物医学信号处理、移动通信及图象处理等领域的应用前景,越来越引起人们的关注,成为研究的热点。介绍一种基于四阶累积量的非高斯性最大化的ICA算法解决盲源分离的问题,并给出了该算法分离通信信号的计算机仿真结果,验证了算法的有效性。

关 键 词:盲信号处理  盲源分离  独立分量分析

Researchon Independent Component Analysis of Blind Signal Separation
ZHOU Cun,CHENG Li-li,XIE Jing. Researchon Independent Component Analysis of Blind Signal Separation[J]. Radio Engineering of China, 2012, 42(12): 30-32
Authors:ZHOU Cun  CHENG Li-li  XIE Jing
Affiliation:( Hebei Fareast Communication System Engineering Co., Ltd, Shijiazhuang Hebei 050200, China)
Abstract:BSS means separating the statistically independent source signals from their mixture. Independent component analysis (ICA) is a new method of blind source separation. It has attracted great attention and has been an attractive trend because of its poten-tial application in signal processing such as speech signal processing, array signal processing,biological and medical signal processing, and wireless communication and image processing. A non-Gaussian maximization ICA algorithm based on fourth-order cumulants is introduced. And the simulation results of communication signal separation are given. The results show that the algorithm is effective.
Keywords:blind signal processing  blind source separation  independent component analysis (ICA)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号