首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于重复训练的支持向量机方法
引用本文:吴巧敏,林亚平. 一种基于重复训练的支持向量机方法[J]. 计算机工程与应用, 2007, 43(31): 165-168
作者姓名:吴巧敏  林亚平
作者单位:湖南大学,计算机与通信学院,长沙,410082;湖南大学,计算机与通信学院,长沙,410082
基金项目:湖南省自然科学基金 , 湖南省教育厅科研项目
摘    要:针对支持向量机中存在的对噪音和野值敏感的问题,提出了一种基于重复训练的支持向量机方法。该方法选取重复训练后会对分类面有影响的样本,根据其类别隶属度,重复训练相应的次数,以此来改变样本的权值,减小噪音和野值的影响。将该算法应用于文本分类中,实验结果表明,该方法在适度增加了训练时间的情况下,不仅比标准支持向量机方法具有更好的抗噪音和野值的能力,而且提高了分类性能。

关 键 词:支持向量机  文本分类  隶属度
文章编号:1002-8331(2007)31-0165-04
修稿时间:2007-03-01

Support vector machine based on training repeatedly
WU Qiao-min,LIN Ya-ping. Support vector machine based on training repeatedly[J]. Computer Engineering and Applications, 2007, 43(31): 165-168
Authors:WU Qiao-min  LIN Ya-ping
Affiliation:The College of Computer and Communication,Hunan University,Changsha 410082,China
Abstract:Since SVM is very sensitive to outliers and noises in the training set,a support vector machine algorithm based on training repeatedly is proposed in this paper.Samples having effects on decision surface after being trained repeatedly are chosen.And then they are trained repeatedly for some times according to their fuzzy membership.The weight of these samples is changed by this way and reduced in the influence of outliers and noises.The improved SVM algorithm is employed to text categorization,though the training time is increased,better effect is obtained than the traditional support vector machine,and this method effectively distinguishes between the valid samples and the outliers or noises.
Keywords:Support Vector Machine(SVM)  text categorization  membership
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号