首页 | 本学科首页   官方微博 | 高级检索  
     

基于关联度网络流量预测的加权局域线性模型
引用本文:雷霆,余镇危. 基于关联度网络流量预测的加权局域线性模型[J]. 计算机工程与应用, 2007, 43(32): 135-137
作者姓名:雷霆  余镇危
作者单位:中国矿业大学,机电与信息工程学院,北京,100083;北京林业大学,理学院,北京,100083;中国矿业大学,机电与信息工程学院,北京,100083
基金项目:高等学校博士学科点专项科研项目
摘    要:用来预测混沌时间序列的传统加权局域模型一般用空间距离来定义邻近点的权重,当重构相空间嵌入维数增大时预测效果不是很理想。考虑了关联度对预测中心动力学行为的影响,提出用关联度来定义权重的方法,建立了一个用来预测网络流量新型的加权局域线性模型。模拟试验结果表明,和传统加权模型相比,当嵌入维数较高的时候,该模型能在较大程度上提高网络流量的预测精度。

关 键 词:混沌  关联度  加权  局域线性模型
文章编号:1002-8330(2007)32-0135-03
修稿时间:2007-03-01

Adding-weight local-region linear model of network traffic forecast based on degree of incidence
LEI Ting,YU Zhen-wei. Adding-weight local-region linear model of network traffic forecast based on degree of incidence[J]. Computer Engineering and Applications, 2007, 43(32): 135-137
Authors:LEI Ting  YU Zhen-wei
Affiliation:1.School of Mech. Electronic & Inf. Engineering,China University of Mining & Technology at Beijing,Beijing 100083,China 2.School of Science,Beijing Forestry University,Beijing 100083,China
Abstract:When the embedded dimension of reconstructive phase space increase,applying the traditional adding-weight local-region model,which the weight of neighbor phase points is generally determined by space distance to forecast the ehaotie time series,is not so satisfied.In the paper,taking the incidence-degree impaet on the dynamieal behavior of foreeast eenter point into account,a novel adding-weight local-region linear model for forecasting network traffie is created,with the weight of neighbor phase points defined by incidence-degree between neighbor phase points with forecast center point.The result of simulation shows the presented model can greatly improve precision of network traffic forecasting when the embedded dimension is high,compared with the traditional method.
Keywords:chaos   incidence degree   adding-weight   local-region linear model
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号