首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of test method and crack size on the fracture toughness of a chain-silicate glass-ceramic
Authors:G H Beall  K Chyung  R L Stewart  K Y Donaldson  H L Lee  S Baskaran  D P H Hasselman
Affiliation:(1) Corning Glass Works, 14831 Corning, New York, USA;(2) Department of Materials Engineering, Virginia Polytechnic Institute and State University, 24061 Blacksburg, Virginia, USA
Abstract:The fracture toughness of a canasite glass-ceramic with a highly acicular, interlocked grain structure was measured by a number of different methods. The values at room temperature obtained by the chevron-notch, short-bar and notched-beam methods ranged from 4 to 5 M Pa m–1/2, well above literature values for other glass-ceramics. Similar values of toughness were obtained by the fracture of bars with indentation cracks introduced with loads ranging from 1.96 to 400 N, but only for crack sizes >200 mgrm, with lower values for cracks of smaller size. The toughness values obtained by the direct measurement of the size of the indentation cracks were appreciably lower than the values obtained by all other methods over the total range of indentation loads and corresponding crack size. SEM fractography showed that the surface within the indentation cracks was appreciably smoother than the surrounding fracture surface. The high values of fracture toughness were attributed to the combined mechanisms of crack-deflection and microcrack-toughening due to the stress-enhanced creation of microcracks caused by the residual stresses which arise from the thermal expansion anisotropy of the canasite monoclonic crystal structure. The strong negative temperature dependence of the fracture toughness suggests that at room temperature microcrack toughening represents the primary contributing mechanism to the fracture toughness. The combined effects of crack-deflection and microcrack-toughening can lead to the development of glass-ceramics with greatly improved resistance to crack propagation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号