首页 | 本学科首页   官方微博 | 高级检索  
     


Stable adaptive controller design of robotic manipulators via neuro‐fuzzy dynamic inversion
Authors:Fu‐Chun Sun  Zeng‐Qi Sun  Han‐Xiong Li
Abstract:In this paper, a stable adaptive control approach is developed for the trajectory tracking of a robotic manipulator via neuro‐fuzzy (NF) dynamic inversion, an inverse model constructed by the dynamic neuro‐fuzzy (DNF) model with desired dynamics. The robot neuro‐fuzzy model is initially built in the Takagi‐Sugeno (TS) fuzzy framework with both structure and parameters identified through input/output (I/O) data from the robot control process, and then employed to dynamically approximate the whole robot dynamics rather than its nonlinear components as is done by static neural networks (NNs) through parameter learning algorithm. Since the NF dynamic inversion comprises a cluster of reference trajectories connecting the initial state to the desired state of the robot, the dynamic performance in the initial control stage of robot trajectory tracking can be guaranteed by choosing the optimum reference trajectory. Furthermore, the assumption that the robot states should be on a compact set can be excluded by NF dynamic inversion design. The system stability and the convergence of tracking errors are guaranteed by Lyapunov stability theory, and the learning algorithm for the DNF system is obtained thereby. Finally, the viability and effectiveness of the proposed control approach are illustrated through comparing with the dynamic NN (DNN) based control approach. © 2005 Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号