一种粒子群优化融合特征的零样本图像分类算法 |
| |
摘 要: | 针对目标类语义属性描述的局限性,提出一种基于自适应加权融合特征的零样本图像分类算法。首先,随机初始化融合权重,利用神经网络融合文本的语义词向量特征和语义属性;然后,利用粒子群算法优化特征融合的权重;最后,把加权融合的特征作为零样本图像分类的迁移知识。实验结果表明,基于自适应加权融合的零样本图像分类算法在动物属性数据集(AWA)上测试的准确率达到88.9%,验证了该方法的有效性。同时与融合特征算法相比,亦提高了零样本图像分类模型的稳定性。
|
本文献已被 CNKI 等数据库收录! |
|