首页 | 本学科首页   官方微博 | 高级检索  
     


Tensile fracture characteristics of nanostructured ferritic alloy 14YWT
Authors:Jeoung Han Kim  Thak Sang Byun  D.T. Hoelzer
Affiliation:a Special Alloys Group, Korea Institute of Materials Science, Changwon, South Korea
b Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Abstract:High temperature tensile fracture behavior has been characterized for the nanostructured ferritic alloy 14YWT (SM10 heat). Uniaxial tensile tests were performed at temperatures ranging from room temperature to 1000 °C in vacuum at a nominal strain rate of 10−3 s−1. Comparing with the existing oxide dispersion strengthened (ODS) steels such as Eurofer 97 and PM2000, the nanostructured alloy showed much higher yield and tensile strength, but with lower elongation. Microstructural characterization for the tested specimens was focused on the details of fracture morphology and mechanism to provide a feedback for process improvement. Below 600 °C, the fracture surfaces exhibited a quasi-brittle behavior presented by a mixture of dimples and cleavage facets. At or above 600 °C, however, the fracture surfaces were fully covered with fine dimples. Above 700 °C dimple formation occurred by sliding and decohesion of grain boundaries. It was notable that numerous microcracks were observed on the side surface of broken specimens. Formation of these microcracks is believed to be the main origin of the poor ductility of 14YWT alloy. It is suggested that a grain boundary strengthening measure is essential to improve the fracture property of the alloy.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号