Formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel |
| |
Authors: | M. C. Schneider C. Beckermann |
| |
Affiliation: | (1) Department of Mechanical Engineering, University of Iowa, 52242 Iowa City, IA |
| |
Abstract: | The formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel is simulated by simultaneously solving macroscopic mass, momentum, energy, and species conservation equations with full coupling of the temperature and concentrations through thermodynamic equilibrium at the solid/liquid interface. The flow field, solid fraction evolution, and macrosegregation patterns for four cases are presented. The results show both the formation of channel segregates and the formation of islands of mush surrounded by bulk melt. In examining the solidification of a ten-element steel, the global extent of macrosegregation of an element is found to be linearly dependent on its partition coefficient (more severe segregation for small partition coefficient), although such scaling is not possible locally. Results for the solidification of a binary Fe-C alloy (with the same carbon content as the ten-element alloy) are similar to those for the ten-element alloy due solely to the large contribution of carbon to buoyancy driven flow in the ten-element steel chosen for study. While including only those elements that make significant contributions to buoyancy driven flow reproduces the global extent of macrosegregation seen in the ten-element alloy, local differences in the predictions are visible. Finally, comparison of results for the solidification of the same ten-element steel using two different sets of data to describe the partition coefficients and change in liquidus temperature with concentration of the elements shows completely opposite behavior,i.e., upward flow through the mushy zone for one case and downward flow for the other. Thus, the need to have accurate phase-equilibrium data when modeling multicomponent macrosegregation is illustrated. Together, the results give an indication of what areas require more careful examination if accurate modeling of multicomponent solidification is to be accomplished. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|