首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进型稀疏自动编码器的图像识别
引用本文:尹征,唐春晖,张轩雄. 基于改进型稀疏自动编码器的图像识别[J]. 电子科技, 2016, 29(1): 124
作者姓名:尹征  唐春晖  张轩雄
作者单位:(上海理工大学 光电信息与计算机工程学院,上海 200093)
摘    要:传统的稀疏自动编码器不具备平移不变性,同时对非高斯噪声较为敏感。为增加网络平移不变的特性,借鉴卷积神经网络的相关理论,通过对原始的像素块进行卷积运算以达到上述目的;而为了提高对非高斯噪声的鲁棒性,自动编码器的代价函数由均方误差改为了最大相关熵准则。通过在MNIST和CIFAR-10数据集上进行试验,结果证明,改进后的方法较传统的自动编码器具有更好地识别效果,识别率提高了2%~6%。

关 键 词:深度学习  自动编码器  卷积神经网络  最大相关熵  

Image Recognition Based on Improved Sparse Auto-encoder
YIN Zheng,TANG Chunhui,ZHANG Xuanxiong. Image Recognition Based on Improved Sparse Auto-encoder[J]. Electronic Science and Technology, 2016, 29(1): 124
Authors:YIN Zheng  TANG Chunhui  ZHANG Xuanxiong
Affiliation:(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
Abstract:The traditional sparse auto-encoder lacks invariant translation and is sensitive to non-Gauss noise.A method convolving the original pixel block is proposed to increase the network invariance with the mean square error (MSE) replaced by the maximum correntropy criterion (MCC) in cost function to improve the anti-noise ability.The proposed method is evaluated using the MINIST and CIFAR-10 datasets.Experimental results show that the proposed approach improves the recognition rate by 2% in the condition of non-noise and by 6% in the noise condition.
Keywords:deep learning  auto encoder  convolutional neural network  maximum correntropy criterion,
本文献已被 万方数据 等数据库收录!
点击此处可从《电子科技》浏览原始摘要信息
点击此处可从《电子科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号