首页 | 本学科首页   官方微博 | 高级检索  
     

一种视觉词软直方图的图像表示方法
引用本文:王彦杰,刘峡壁,贾云得. 一种视觉词软直方图的图像表示方法[J]. 软件学报, 2012, 23(7): 1787-1795
作者姓名:王彦杰  刘峡壁  贾云得
作者单位:北京理工大学计算机学院智能信息技术北京市重点实验室;91635部队;
基金项目:国家自然科学基金(60973059, 90920009)
摘    要:基于视觉词的统计建模和判别学习,提出一种视觉词软直方图的图像表示方法.假设属于同一视觉词的图像局部特征服从高斯混合分布,利用最大-最小后验伪概率判别学习方法从样本中估计该分布,计算局部特征与视觉词的相似度.累加图像中每个视觉词与对应局部特征的相似度,在全部视觉词集合上进行结果的归一化,得到图像的视觉词软直方图.讨论了两种具体实现方法:一种是基于分类的软直方图方法,该方法根据相似度最大原则建立局部特征与视觉词的对应关系;另一种是完全软直方图方法,该方法将每个局部特征匹配到所有视觉词.在数据库Caltech-4和PASCAL VOC 2006上的实验结果表明,该方法是有效的.

关 键 词:视觉词  软直方图  图像表示  高斯混合模型  判别学习
收稿时间:2011-01-13
修稿时间:2011-06-20

Visual Word Soft-Histogram for Image Representation
WANG Yan-Jie,LIU Xia-Bi and JIA Yun-De. Visual Word Soft-Histogram for Image Representation[J]. Journal of Software, 2012, 23(7): 1787-1795
Authors:WANG Yan-Jie  LIU Xia-Bi  JIA Yun-De
Affiliation:Beijing Laboratory of Intelligent Information Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;The 91635th Unit of PLA, Beijing 102249, China;Beijing Laboratory of Intelligent Information Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;Beijing Laboratory of Intelligent Information Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:This paper proposes a visual word soft-histogram for image representation based on statistical modeling and discriminative learning of visual words. This type of learning uses Gaussian mixture models (GMM) to reflect the appearance variation of each visual word and employs the max-min posterior pseudo-probabilities discriminative learning method to estimate GMMs of visual words. The similarities between each visual word and corresponding local features are computed, summed, and normalized to construct a soft-histogram. This paper also discusses the implementation of two representation methods. The first one is called classification-based soft histogram, in which each local feature is assigned to only one visual word with maximum similarity. The second one is called completely soft histogram, in which each local feature is assigned to all the visual words. The experimental results of Caltech-4 and PASCAL VOC 2006 confirm the effectiveness of this method.
Keywords:visual word  soft-histogram  image representation  Gaussian mixture model  discriminative learning
本文献已被 CNKI 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号