首页 | 本学科首页   官方微博 | 高级检索  
     

基于邻域最小生成树的半监督极化SAR图像分类方法
引用本文:滑文强,王爽,郭岩河,谢雯. 基于邻域最小生成树的半监督极化SAR图像分类方法[J]. 雷达学报, 2019, 8(4): 458-470. DOI: 10.12000/JR18104
作者姓名:滑文强  王爽  郭岩河  谢雯
作者单位:西安邮电大学计算机学院 西安 710121;西安邮电大学陕西省网络数据分析与智能处理重点实验室 西安 710121;智能感知与图像理解教育部重点实验室 国际智能感知与计算联合研究中心西安电子科技大学 西安 710071;西安邮电大学计算机学院 西安 710121
基金项目:国家自然科学基金;陕西省普通高等学校重点学科专项
摘    要:该文针对极化SAR图像分类中只有少量标记样本的问题,提出了一种基于邻域最小生成树的半监督极化SAR图像分类方法。该方法针对极化SAR图像以像素为分类对象的特点,结合自训练方法的思想,利用极化SAR图像像素点的空间信息,提出了基于邻域最小生成树辅助学习的样本选择策略,增加自训练过程中被选择无标记样本的可靠性,扩充标记样本数量,训练更好的分类器。最终用训练好的分类器对极化SAR图像进行测试。对3组真实的极化SAR图像进行测试,实验结果表明,该方法在只有少量标记样本的情况下能获得满意的分类结果,且分类正确率明显优于传统的分类算法。 

关 键 词:极化SAR图像   地物分类   半监督   最小生成树
收稿时间:2018-12-03

Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree
HUA Wenqiang,WANG Shuang,GUO Yanhe,XIE Wen. Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree[J]. Journal of Radars, 2019, 8(4): 458-470. DOI: 10.12000/JR18104
Authors:HUA Wenqiang  WANG Shuang  GUO Yanhe  XIE Wen
Affiliation:①.School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an 710121, China②.Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China③.Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi’an, 710071, China
Abstract:In this paper, a novel semi-supervised classification method based on the Neighborhood Minimum Spanning Tree (NMST) is proposed to solve the Polarimetric Synthetic Aperture Radar (PolSAR) terrain classification when labeled samples are few. Combining the idea of self-training method and spatial information of the pixels in PolSAR image, a new help-training sample selection strategy based on spatial neighborhood information is proposed, named as NMST, to select the high reliable unlabeled samples to enlarge the training set and improve the base classifier. Finally, the PolSAR image is classified by this improved classifier. The experiments results tested on three PolSAR data sets show that the proposed method achieves a better performance than existing classification methods when the number of labeled samples is few. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《雷达学报》浏览原始摘要信息
点击此处可从《雷达学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号