首页 | 本学科首页   官方微博 | 高级检索  
     

基于域对抗网络和BERT的跨领域文本情感分析
引用本文:蔡国永,林强,任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报(工学版), 2020, 50(1): 1-7,20. DOI: 10.6040/j.issn.1672-3961.0.2019.293
作者姓名:蔡国永  林强  任凯琪
作者单位:桂林电子科技大学计算机与信息安全学院,广西 桂林541004;桂林电子科技大学计算机与信息安全学院,广西 桂林541004;桂林电子科技大学计算机与信息安全学院,广西 桂林541004
基金项目:国家自然科学基金资助项目(61763007);广西自然科学基金重点资助项目(2017JJD160017)
摘    要:跨领域文本情感分析时,为了使抽取的共享情感特征能够捕获更多的句子语义信息特征,提出域对抗和BERT(bidirectional encoder representations from transformers)的深度网络模型。利用BERT结构抽取句子语义表示向量,通过卷积神经网络抽取句子的局部特征。通过使用域对抗神经网络使得不同领域抽取的特征表示尽量不可判别,即源领域和目标领域抽取的特征具有更多的相似性;通过在有情感标签的源领域数据集上训练情感分类器,期望该分类器在源领域和目标领域均能达到较好的情感分类效果。在亚马逊产品评论数据集上的试验结果表明,该方法具有良好的性能,能够更好地实现跨领域文本情感分类。

关 键 词:跨领域  情感分析  卷积神经网络  域对抗网络  共享情感特征
收稿时间:2019-06-10

Cross-domain text sentiment classification based on domain-adversarialnetwork and BERT
Guoyong CAI,Qiang LIN,Kaiqi REN. Cross-domain text sentiment classification based on domain-adversarialnetwork and BERT[J]. Journal of Shandong University of Technology, 2020, 50(1): 1-7,20. DOI: 10.6040/j.issn.1672-3961.0.2019.293
Authors:Guoyong CAI  Qiang LIN  Kaiqi REN
Affiliation:School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
Abstract:In order to capture more sentence semantic information from the extracted shared sentiment features for cross-domain sentiment analysis, a deep network model based on domain adversarial mechanism and BERT (bidirectional encoder representations from transformers) was proposed. The model firstly used BERT to obtain the semantic representation vectors of sentences, and then extracted the local features of sentences with a convolutional neural network. A domain adversarial neural network was designed to make the representations of features extracted from different domains to be as indistinguishable as possible, that was, the features extracted from source domain and target domain had much more similarities; and a sentiment classifier was trained on the source domain dataset with sentiment labels, and it was expected that the trained sentiment classifier would have good classification performance in the source domain, and in the target domain. The experimental results on Amazon product reviews dataset showed that the proposed method achieved the expectation and was competent for achieving cross-domain text sentiment classification.
Keywords:cross-domain  sentiment analysis  convolution neural network  domain adversarial network  shared sentiment features  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号