首页 | 本学科首页   官方微博 | 高级检索  
     

结合图像灰度信息和空间信息的有意义区域分割
引用本文:杨勇,黄波,王桥,吴乐南. 结合图像灰度信息和空间信息的有意义区域分割[J]. 电子学报, 2003, 31(2): 252-254
作者姓名:杨勇  黄波  王桥  吴乐南
作者单位:东南大学无线电系,江苏南京,210096;东南大学无线电系,江苏南京,210096;东南大学无线电系,江苏南京,210096;东南大学无线电系,江苏南京,210096
基金项目:国家自然科学基金 (No 60 0 72 0 1 3)
摘    要:本文提出了一种应用图像灰度信息和空间信息的分割方法.首先利用快速的优化分水岭算法将图像分成多个小区域;其次,计算每一个小区域的特性参数,并确定各个区域之间的拓扑关系;最后用模糊C-均值聚类算法根据区域的灰度特性及空间特性进行归类,获取最终的分割结果.结果显示,该方法与阈值化模糊C-均值聚类算法相比,分割结果更加有意义,而且速度也有极大地提高.

关 键 词:图像分割  优化分水岭  模糊C-均值聚类
文章编号:0372-2112(2003)02-0252-03

Meaningful Region Segmentation of an Image Combined with Intensity Distribution and Spatial Information Field
YANG Yong,HUANG Bo,WANG Qiao,WU Le nan. Meaningful Region Segmentation of an Image Combined with Intensity Distribution and Spatial Information Field[J]. Acta Electronica Sinica, 2003, 31(2): 252-254
Authors:YANG Yong  HUANG Bo  WANG Qiao  WU Le nan
Affiliation:Dept of Radio Engineering,Southeast University,Nanjing,Jiangsu 210096,China
Abstract:This paper proposed a new scheme to segment an image into meaningful regions based on its intensity distribution and spatial information.First,an image is separated into a large number of small partitions by a highly optimized watershed algorithm;then,the characteristic parameters are calculated for each partition,and the topological relation is determined between each other;finally,fuzzy C means clustering algorithm is used to obtain the final segmentation result.The result shows that this scheme can obtain more meaningful regions with less time consumption than that by the direct fuzzy C means clustering algorithm.
Keywords:image segmentation  optimized watershed algorithm  fuzzy C means clustering
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号