首页 | 本学科首页   官方微博 | 高级检索  
     


Factors Controlling Gully Advancement and Models Evaluation (Hableh Rood Basin,Iran)
Authors:Aliakbar Nazari Samani  Hassan Ahmadi  Aliasghar Mohammadi  Jamal Ghoddousi  Ali Salajegheh  Guy Boggs  Razieh Pishyar
Affiliation:(1) Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou Gansu, 73000, People’s Republic of China;(2) Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu Sichuan, 610041, People’s Republic of China
Abstract:Gully erosion is one of the most complicated and destructive forms of water erosion. In order to prevent this erosion, the important factors controlling gully heads must be understood. This paper examines gully head advancement in the Hableh Rood Basin, Iran by (1) observing gully head advance between 1957 and 2005 using field studies, aerial photography and GIS analysis and: (2) applying and evaluating widely used experimental models including the, Thompson (Trans ASAE 7(1):54–55, 1964), SCS (I) and SCS (II) models, for estimating migrating headcuts over the study period. The results showed that the highest mean gully advancement (0.26 m year − 1) took place during the 1956–1967 period, with most gullies having lower and steady headcut retreat rates between 1967–2000 (0.21 m year − 1) and 2000–2005 (0.15 m year − 1). This suggests that the majority of gullies in the study area were still in the early stages of formation in the first study period and their formation may be linked to land use or climatic changes pre 1956. Analysis of the correlation between environmental characteristics of the study area and gully advancement indicated that the upslope area of head cuts and soluble mineral content of the soil were the two most important factors influencing the spatial and temporal variation of gully longitudinal development. Results of multiple regression revealed that the simple relation including upslope area and soluble minerals can explain 93% of total variance and relatively reflects the effects of runoff and waterfall process for headcut retreat. Application of statistical error analysis to evaluate the four gully advancement models showed that in comparison to other models, the second model of SCS has more reliable results for predicting longitudinal gully advancement in this study area and other similar regions. However, this study indicates that future modelling in the region should consider the role of soil soluble mineral content in predicting gully advancement.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号