首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of temperature on the performance of a biofilter inoculated withPseudomonas putida to treat waste-air containing ethanol
Authors:Kwang-Hee Lim  Sang-Won Park  Eun-Ju Lee
Affiliation:(1) Department of Chemical Engineering, Daegu University, Gyeongsan, 712-714 Gyeongbuk, Korea;(2) Department of Food Engineering, Daegu University, Gyeongsan, 712-714 Gyeongbuk, Korea
Abstract:The microbes ofPseudomonas putida (KCTC1768) were fixed on the biofilter-packing media comprising an equivolume mixture of granular activated carbon (GAC) and compost, by recycling the liquid medium containing incubatedPseudomonas putida (KCTC1768). A biofilter experiment was performed to observe its transient behavior under the operating condition of 2,180 ppmv of ethanol-inlet concentration and 158 g/m3/h of ethanol-inlet load for the five consecutive temperature-stages of operation ranging from 25 °C to 40 °C. For the five temperaturestages of operation their removal efficiencies were measured and were compared with each other. The optimum operating temperature of the biofilter turned out to beca. 30 °C, which was consistent with the previous experimental result of Lim and Park. However, the optimum incubation-temperatures ofPseudomonas putida (KCTC1768) and the equivalent (i.e., NCIMB8858) were announced to be of 26 °C and 25 °C by Korea Collection for Type Cultures (KCTC) and National Collections of Industrial, Food and Marine Bacteria (NCIMB), respectively. It was also confirmed by the experiment in which the microbes were incubated in the same liquid medium as in the previous work of Lim and Park at temperature ranging from 20 °C to 40 °C and their growth rates were subsequently measured. Thus, the optimum operating temperature of a biofilter inoculated withPseudomonas putida (KCTC 1768) was proved to be 30 °C, which was higher than its optimum incubation-temperature byca. 5 °C
Keywords:Biofilter  Waste-Air  VOC  Ethanol  Optimum Operating Temperature  Optimum Incubation Temperature   Pseudomonas putida
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号