首页 | 本学科首页   官方微博 | 高级检索  
     

基于K-近邻法的局部加权朴素贝叶斯分类算法
引用本文:曹根,葛孝堃,杨丽琴. 基于K-近邻法的局部加权朴素贝叶斯分类算法[J]. 计算机应用与软件, 2011, 0(9)
作者姓名:曹根  葛孝堃  杨丽琴
作者单位:东华大学计算机科学与技术学院;上海中医药大学图书信息中心;
摘    要:分类算法一直以来都是数据挖掘领域的研究重点,朴素贝叶斯分类算法是众多优秀分类算法之一,但由于其条件属性必需独立,使得该算法也存在着一定的局限性。为了从另外一种角度来改进该算法,提高分类性能,提出了一种基于K-近邻法的局部加权朴素贝叶斯分类算法。使用K-近邻法对属性加权,找到最合适的加权值,运用加权后的朴素贝叶斯分类算法去分类,实验表明该算法提高了分类的可靠性与准确率。

关 键 词:朴素贝叶斯  K-近邻法  局部加权  分类  

LOCALLY WEIGHTED NAIVE BAYES CLASSIFICATION ALGORITHM BASED ON K-NEAREST NEIGHBOUR
Cao Gen Ge Xiaokun Yang Liqin. LOCALLY WEIGHTED NAIVE BAYES CLASSIFICATION ALGORITHM BASED ON K-NEAREST NEIGHBOUR[J]. Computer Applications and Software, 2011, 0(9)
Authors:Cao Gen Ge Xiaokun Yang Liqin
Affiliation:Cao Gen1 Ge Xiaokun1 Yang Liqin2 1(School of Computer Science and Technology,Donghua University,Shanghai 201620,China) 2(Center of Library and Information,Shanghai University of T.C.M,Shanghai 201203,China)
Abstract:Classification algorithm has been the focus of research in the field of data mining,the Naive Bayes classification algorithm is one of the good classification algorithms.Because its condition attributes shall be independent however,there are some limitations in the algorithm.In order to improve the classification performance of the algorithm from another side,the locally weighted Naive Bayes classification algorithm based on K-nearest neighbour has been proposed in this paper.K-nearest neighbour method is u...
Keywords:Naive Bayes K-nearest neighbour Locally weighted Classification  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号