首页 | 本学科首页   官方微博 | 高级检索  
     


Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability
Authors:Sawanta S Mali  Hyungjin Kim  Hyun Hoon Kim  Sang Eun Shim  Chang Kook Hong
Affiliation:1. Polymer Energy Materials Laboratory, School of Advanced Chemical Engineering, Chonnam National University, Gwangju 500 757, Republic of Korea;2. Department of Chemistry & Chemical Engineering, Inha University, 100 Inha-ro, Namgu, Incheon 402-751, Republic of Korea
Abstract:Designing air-stable perovskite solar cells (PSCs) is a recent trend in low-cost photovoltaic technology. Metal oxide-based electron transporting layers (ETLs) and hole transporting layers (HTLs) have attracted tremendous attention in PSCs, because of their excellent air stability, high electron mobility, and optical transparency. Herein, we report a co-precipitation method for the synthesis of p-type nanoporous nickel oxide (np-NiOx) thin films as the HTL for inverted (p-i-n) PSCs. The best-performing p-i-n PSC having np-NiOx HTL, (FAPbI3)0.85(MAPbBr3)0.15 (herein FAPbI3 stands for formamidinium lead iodide and MAPbBr3 stands for methylammonium lead bromide) perovskite and phenyl-C61-butyric acid methyl ester (PCBM)/ZnO ETL exhibited a 19.10% (±1%) power conversion efficiency (PCE) with a current density (JSC) of 22.76?mA?cm?2, open circuit voltage (VOC) of 1.076?V and fill factor (FF) of 0.78 under 1?sun (100?mW?cm?2). Interestingly, the developed p-i-n PSCs based on p-type NiOx and n-type ZnO could retain >80% efficiency after 160?days, which is much higher than conventional PEDOT:PSS HTL-based PSCs. Our findings provide air-stable perovskite solar cells with high efficiency.
Keywords:Corresponding author  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号