首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA的图像小波去噪方法
引用本文:芮挺,王金岩,沈春林,丁健. 基于PCA的图像小波去噪方法[J]. 小型微型计算机系统, 2006, 27(1): 158-161
作者姓名:芮挺  王金岩  沈春林  丁健
作者单位:1. 南京航空航天大学,自动化学院,江苏,南京,210016;解放军理工大学,工程兵工程学院,江苏,南京,210007
2. 上海交通大学,电子信息与电气工程学院,上海,200030
3. 南京航空航天大学,自动化学院,江苏,南京,210016
4. 解放军理工大学,工程兵工程学院,江苏,南京,210007
基金项目:航空基金;空军装备部科研项目
摘    要:目前使用的各种小波去噪方法基本上都是建立在对噪声方差精确估计的基础上,而对噪声方差的精确估计是很困难的.提出了一种采用主分量分析(PCA)提取小波系数的主要特征,通过对小波域中噪声能量的估计来实现去噪的新方法.首先利用PCA对小波高频子带进行局部特征提取;然后以主分量对小波系数进行重建的平均能量作为局部噪声能量的估计;将原小波系数的能量减去噪声能量,就得到去噪后的小波系数;最后用小波逆变换对剔除噪声分量后的小波系数进行恢复得到去噪后的图像.本文算法无需对噪声方差进行估计,因而更具实用价值.本文算法与“软阈值”、“硬阈值”去噪方法相比,峰值信噪比(PNNR)提高了2~8dB.实验证实了本文算法良好的去噪性能。

关 键 词:图像处理  小波去噪  主分量分析
文章编号:1000-1220(2006)01-0158-04
收稿时间:2004-07-21
修稿时间:2004-07-21

Wavelet Image Denoising Based on Principle Component Analysis
RUI Ting,WANG Jin-yan,SEHN Chun-lin,DING Jian. Wavelet Image Denoising Based on Principle Component Analysis[J]. Mini-micro Systems, 2006, 27(1): 158-161
Authors:RUI Ting  WANG Jin-yan  SEHN Chun-lin  DING Jian
Abstract:Most of the existing methods on wavelet image denoising rely on accurate estimation of noise variance. In practice, however, the estimation of noise variance is very hard. To overcome this difficulty, this paper proposes a new method which utilizes noise energy, instead of its variance, to perform image denoising based on Principle Component Analysis (PCA) in the wavelet domain. First, wavelet decomposition is conducted on the noisy image, and PCA is used to extract local features; Second, the wavelet coefficients are reconstruct based on the top few principle components and the local noise energy is estimated based on the mean energy of reconstructed wavelet coefficients; Third, noise energy is subtracted from the original wavelet coefficients, which results in denoised wavelet coefficients; Finally, the inverse wavelet transform is performed to obtain the denoised image. A unique feature of the new algorithm is that it does not rely on the difficult task of noise variance estimation. It is therefore of great value in solving real-world problems. Compared with the commonly-used wavelet hard-threshholding and soft-thresholing methods, the new algorithm increases the PSNR by 2-8dB. Extensive experiments are conducted and the results demonstrate the superior denoising performance of the proposed algorithm.
Keywords:image processing   wavelet denoising   principle component analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号