首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进BP神经网络的路面状态识别研究
引用本文:李虹,冯彦辉,林君. 基于改进BP神经网络的路面状态识别研究[J]. 微计算机信息, 2010, 0(2)
作者姓名:李虹  冯彦辉  林君
作者单位:吉林大学;吉林省水利科学研究院;吉林省吉辉科技股份有限公司;
基金项目:科技部科研院所技术开发研究专项资金《气象通量采集系统和路面状态传感器》(NO:2007505)
摘    要:解决路面气象状态的识别问题并满足一定的精度要求,是高速公路气象监测研究中的一个关键问题。本文提取、和三种彩色模型信息组成特征向量;提出一种附加动量法和自适应学习率相结合的改进BP算法;在此基础上建立了非线性识别模型,并将该模型应用于路面状态识别试验。实验结果表明该模型能准确有效地识别路面气象状态。

关 键 词:神经网络  颜色模型  改进BP算法  非线性系统  路面状态  

Study on Road Surface Condition Recognition based on BP Network Improved
LI Hong FENG Yan-hui LIN Jun. Study on Road Surface Condition Recognition based on BP Network Improved[J]. Control & Automation, 2010, 0(2)
Authors:LI Hong FENG Yan-hui LIN Jun
Abstract:To resolve recognition problem of road surface conditions and satisfy measure accuracy is one key of freeway meteorology monitoring study. Three kinds of,and color models extracted constitute feature vectors. A BP neural network algorithm improved by momentum and self-adaptive learning rate is presented. On the basis of these, a model of the nonlinear system is set up and applied in road surface conditions identification. Experimental results show that the model can identify road surface meteorology more ac...
Keywords:neural network  BP algorithm improved  nonlinear system  road surface meteorology  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号