Development of p-Tau Differentiated Cell Model of Alzheimer’s Disease to Screen Novel Acetylcholinesterase Inhibitors |
| |
Authors: | Giuseppe Uras Xinuo Li Alessia Manca Antonella Pantaleo Marco Bo Jinyi Xu Stephanie Allen Zheying Zhu |
| |
Affiliation: | 1.School of Pharmacy, The University of Nottingham, University Park, Nottingham NG7 2RD, UK;2.Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK;3.School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;4.Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy |
| |
Abstract: | Alzheimer’s disease (AD) is characterized by an initial accumulation of amyloid plaques and neurofibrillary tangles, along with the depletion of cholinergic markers. The currently available therapies for AD do not present any disease-modifying effects, with the available in vitro platforms to study either AD drug candidates or basic biology not fully recapitulating the main features of the disease or being extremely costly, such as iPSC-derived neurons. In the present work, we developed and validated a novel cell-based AD model featuring Tau hyperphosphorylation and degenerative neuronal morphology. Using the model, we evaluated the efficacy of three different groups of newly synthesized acetylcholinesterase (AChE) inhibitors, along with a new dual acetylcholinesterase/glycogen synthase kinase 3 inhibitor, as potential AD treatment on differentiated SH-SY5Y cells treated with glyceraldehyde to induce Tau hyperphosphorylation, and subsequently neurite degeneration and cell death. Testing of such compounds on the newly developed model revealed an overall improvement of the induced defects by inhibition of AChE alone, showing a reduction of S396 aberrant phosphorylation along with a moderate amelioration of the neuron-like morphology. Finally, simultaneous AChE/GSK3 inhibition further enhanced the limited effects observed by AChE inhibition alone, resulting in an improvement of all the key parameters, such as cell viability, morphology, and Tau abnormal phosphorylation. |
| |
Keywords: | Alzheimer, AChE, GSK3-β , inhibitors, Tau, hyperphosphorylation |
|
|