首页 | 本学科首页   官方微博 | 高级检索  
     


Modular construction of an efficient 1-bit Byzantine agreement protocol
Authors:Brian A Coan  Jennifer L Welch
Affiliation:(1) Bellcore, 445 South Street, 07960 Morristown, NJ, USA;(2) Texas A&M University, 77843 College Station, TX, USA
Abstract:This paper presents a new Byzantine agreement protocol that toleratest processor faults usingO(t·logt) processors,t + 1 rounds,O(t 2 +o·t) total message bits (whereo is the number of processors that must decide), and messages of maximum size 1 bit. It is the first Byzantine agreement protocol that is simultaneously optimal in rounds, message bits, and message size. The new Byzantine agreement protocol is actually a protocol for the (slightly) more general Byzantine relay problem—a problem which we formulate in this paper. The Byzantine relay protocol is the result of a general recursive construction. Each step of the construction combines two smaller (in terms of number of faults tolerated) Byzantine relay protocols into one larger Byzantine relay protocol. The base case is a collection of very simple Byzantine relay protocols, each tolerant of a small constant number of processor faults. A key new feature of the protocol construction technique presented in this paper is that it does not add unproductive overhead rounds: given two constituent protocols that are optimal in the number of rounds, the composite protocol that is constructed is also optimal in the number of rounds.The work of Jennifer Welch was supported in part by NSF Grant CCR-9010730 and an IBM Faculty Development Award. This work was done while she was at the University of North Carolina at Chapel Hill.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号