首页 | 本学科首页   官方微博 | 高级检索  
     


Development of wear resistant composite surface on mild steel by laser surface alloying with silicon and reactive melting
Authors:Jyotsna Dutta Majumdar
Affiliation:Department of Met. & Mat. Engg., I. I. T., Kharagpur, W. B.-721302, India
Abstract:The present study concerns laser surface alloying with silicon of mild steel substrate using a high-power continuous wave CO2 laser with an objective to improve wear resistance. The effect of surface remelting using nitrogen as shrouding environment (with and without graphite coating) on microhardness and wear resistance has also been evaluated. Laser surface alloying leads to formation of a defect free microstructure consisting of iron silicides in laser surface alloyed mild steel with silicon and a combination of silicides and nitrides when remelted in nitrogen. Carbon deposition prior to remelting leads to presence of a few martensite in the microstructure. A significant improvement in microhardness is achieved by laser surface alloying and remelting to a maximum of 800 VHN when silicon alloyed surface is melted using nitrogen shroud with carbon coating. A detailed wear study (against diamond) showed that a significant improvement in wear resistance is obtained with a maximum improvement when remelted in nitrogen atmosphere followed by carbon coating.
Keywords:Mild steel  Silicon  Laser  Surface  Wear
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号