首页 | 本学科首页   官方微博 | 高级检索  
     

融合点扩散函数的预条件黏声最小二乘逆时偏移
引用本文:姚振岸,孙成禹,喻志超,马振. 融合点扩散函数的预条件黏声最小二乘逆时偏移[J]. 石油地球物理勘探, 2019, 54(1): 73-83. DOI: 10.13810/j.cnki.issn.1000-7210.2019.01.009
作者姓名:姚振岸  孙成禹  喻志超  马振
作者单位:1. 东华理工大学放射性地质与勘探技术国防重点学科实验室, 江西南昌 330013;2. 中国石油大学(华东)地球科学与技术学院, 山东青岛 266580;3. 北京大学地球与空间科学学院石油与天然气研究中心, 北京 100871
基金项目:本项研究受国家自然基金项目“深度偏移地震数据特征剖析与深度域直接反演方法研究”(41874153)、国家科技重大专项“复杂目标多尺度资料高精度处理关键技术研究”(2016ZX05006-002)和江西省教育厅科技项目“三维双复杂介质微地震波场全波形模拟与特征研究”联合资助。
摘    要:在传统黏声最小二乘逆时偏移(Q-LSRTM)中,用于反传残差数据的伴随Q传播算子也是衰减的,因此导致其成像分辨率较低。为了改善Q-LSRTM的低分辨率问题,基于点扩散函数(PSF)构建黏声去模糊滤波器,然后将其作为Q-LSRTM迭代过程中的预条件化因子,最终实现高分辨的衰减补偿偏移,因此称为预条件Q-LSRTM。模型测试表明,预条件Q-LSRTM能获得更高的分辨率、更均衡的振幅以及更快的收敛速度。Q值偏移模型的敏感性测试表明,与Q-LSRTM相似,为了显著改善成像效果,预条件Q-LSRTM也需要相对精确的Q值模型和速度模型。

关 键 词:最小二乘逆时偏移  黏声  点扩散函数  去模糊滤波器  预条件  
收稿时间:2018-04-14

Preconditioned visco-acoustic least-squares reverse time migration integrated with point spread function
YAO Zhen'an,SUN Chengyu,YU Zhichao,MA Zhen. Preconditioned visco-acoustic least-squares reverse time migration integrated with point spread function[J]. Oil Geophysical Prospecting, 2019, 54(1): 73-83. DOI: 10.13810/j.cnki.issn.1000-7210.2019.01.009
Authors:YAO Zhen'an  SUN Chengyu  YU Zhichao  MA Zhen
Affiliation:1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, Jiangxi 330013, China;2. School of Geosciences, China University of Petroleum(East China), Qingdao, Shandong 266580, China;3. Institute of Oil & Gas, School of Earth and Space Sciences, Peking University, Beijing 100871, China
Abstract:In conventional visco-acoustic least-squares reverse time migration (Q-LSRTM),the adjoint Q propagators used for backward propagating residual data are also attenuative.Thus,the inverted images from Q-LSRTM are often observed to have lower resolution.To increase the resolution of Q-LSRTM,a preconditioned visco-acoustic least-square reverse time migration is put forward in this paper.The preconditioner is built with viscoa-coustic deblurring filters based on visco-acoustic point spread function.Model tests show that the preconditioned Q-LSRTM can produce images with higher resolution and more balanced amplitudes with faster convergence rate.With sensitivity tests of migration Q model,as the same case of Q-LSRTM,preconditioned Q-LSRTM also need a fairly accurate estimation of migration Q model in order to obtain noticeable improvements in the image quality,meanwhile a fairly accurate velocity model is also needed.
Keywords:least-squares reverse time migration  visco-acoustic  point spread function  deblurring filter  preconditioned  
本文献已被 CNKI 等数据库收录!
点击此处可从《石油地球物理勘探》浏览原始摘要信息
点击此处可从《石油地球物理勘探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号