首页 | 本学科首页   官方微博 | 高级检索  
     


Basic studies of ductile failure processes and implications for fracture prediction
Authors:J ZUO  M A SUTTON  X DENG
Affiliation:Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
Abstract:Fracture of ductile materials has frequently been observed to result from the nucleation, growth and coalescence of microscopic voids. Experimental and analytical studies have shown that both the stress constraint factor and the effective plastic strain play a significant role in the ductile failure process. Experimental results also suggest that these two parameters are not independent of each other at failure initiation. In this study, a methodology for characterizing the effect of stress constraint Am (which is defined to be the ratio of the mean stress and the effective stress Amme ) on ductile failure is proposed. This methodology is based on experimental evidence that shows the effective plastic strain at failure initiation has a one‐to‐one relationship with stress constraint. Numerical analyses based on plane strain and three‐dimensional unit‐cell models have been carried out to investigate failure initiation of the unit cell under different constraint conditions. Results from the numerical studies indicate (a) for each void volume fraction, there exists a local failure locus in terms of mesoscopic quantities, σm and σe, that adequately predict incipient local micro‐void link‐up, (b) the results are fully consistent with a failure criterion that maximizes mesoscopic effective stress for a constant level of stress constraint Am, (c) for high to moderate constraint Am, the link‐up envelope values for σm and σe are consistent with limit load conditions where the critical principal stress σ1c corresponds to the maximum principal stress in the loading history and (d) for low constraint, the link‐up envelope values for σm and σe correspond to link‐up conditions having high levels of plastic strain and a principal stress σ1 that is lower than the maximum value for this loading history. Thus, the results suggest that a two‐parameter ductile fracture criterion is plausible, such as critical crack opening displacement (COD) and stress constraint Am, for predicting the process of stable tearing in materials undergoing ductile void growth during the fracture process.
Keywords:ductile fracture criterion  stress constraint  void volume fraction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号