首页 | 本学科首页   官方微博 | 高级检索  
     


A simple phoswich system
Affiliation:1. University of Bologna, Department of Physics and Astronomy, Viale Berti-Pichat 6/2, 40127 Bologna, Italy;2. INFN Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy;3. Laboratorio NaBi, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;1. Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy;2. Faculty of Physics, Warsaw University of Technology, 00-662 Warszawa, Poland;3. Heavy Ion Laboratory, University of Warsaw, 02-093 Warszawa, Poland;4. Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia, Spain;5. Department of Electronic Engineering, Universitat de València, E-46100 Burjassot, Spain;6. Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany;7. RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama, Japan;8. GANIL, CEA/DSAM and CNRS/IN2P3, F-14076 Caen, France;9. Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul, Turkey;10. Nigde Universitesi, Fen-Edebiyat Falkültesi, Fizik Bölümü, 51240 Nigde, Turkey;11. National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland;12. Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden;13. Department of Physics, University of York, Heslington, YO1 5DD York, United Kingdom;1. Paul Scherrer Institut PSI, CH-5232 Villigen, Switzerland;2. Istituto Nazionale di Fisica Nucleare Sezione di Roma, P.le Aldo Moro 2, 00185 Roma, Italy;3. Swiss Federal Institute of Technology ETH, CH-8093 Zurich, Switzerland;1. College of Physical Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Sichuan University, Chengdu, PR China;2. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx, USA;3. Department of Electrical and Computer Engineering, Rice University, Houston, Tx, USA;4. Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx, USA;5. Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx, USA;1. Imaging Program, Lawson Health Research Institute, London, Ontario, Canada;2. Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada;3. Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada;4. Scintillation Materials Research Center, University of Tennessee, Knoxville, TN, USA;5. Department of Physics & Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada;1. Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia;2. Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2521, Australia;3. Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
Abstract:Normal phoswich detector systems use a combination of NaI(Tl) and CsI(Na) scintillators and require the application of careful pulse-shape discriminator techniques to resolve the two components in the scintillation light output which have decay constants of 250 and 630 ns respectively. These techniques provide a good anticoincidence veto efficiency for a relatively narrow range in the ratio of energy deposits in the two crytals and for a detector system whose temperature is carefully controlled. This paper describes the performance of a simple phoswich which makes use of the fast UV signal from a BaF2 crystal to provide a prompt veto signal. The performance to be expected from various combinations of a BaF2 anticoincidence crystal with other primary detectors is presented. These simulations have been verified by simple experimental tests.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号