首页 | 本学科首页   官方微博 | 高级检索  
     

基于迁移学习的异步电机故障诊断
作者姓名:张二虎
作者单位:中国飞行试验研究院
摘    要:针对异步电机故障诊断中,故障数据样本少导致传统深度神经网络模型泛化能力差的问题,提出一种异构迁移学习的异步电机故障诊断算法。首先,通过仿真平台模拟异步电机故障,以解决故障数据样本少的问题;其次,对正常和故障状态下的电流电压信号进行小波变换,作为深度学习网络的输入;然后,基于多核最大平均差异方法,获得仿真数据和实测数据的深度特征差异,对深度学习神经网络参数微调,使其深度学习特征具有跨域不变性。最终,在实验平台上验证文中所提算法,实验结果表明,该算法的故障诊断准确率高,依赖实测故障数据样本少。

关 键 词:异步电机  故障诊断  迁移学习  深度学习网络
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号