首页 | 本学科首页   官方微博 | 高级检索  
     


Interfacial electron density profile in Nb/Si bilayer films: an X-ray reflectivity study
Authors:N. Suresh
Affiliation:Inter University Consortium for DAE Facilities, University Campus, Khandwa Road, Indore 452 017, India
Abstract:This article describes a systematic study of the nature of interfaces involved in a Nb layer deposited on Si (Nb-on-Si) and Si layer deposited on Nb (Si-on-Nb) bilayer films by using a UHV electron beam evaporation technique, having individual layer thickness of 35 and 100 Å each. By using Grazing angle X-ray reflectivity and adopting a proper modelling technique the electron density profile (EDP) as a function of depth has been determined in the samples. EDP determined in as-deposited 35 Å Nb and 35 Å Si bilayer films show that the width of Si-on-Nb and Nb-on-Si interfaces are 20 Å and 40 Å, respectively. The difference observed in the width of two interfaces is attributed to the different growth morphology of 35 Å Nb and 35 Å Si single-layer films as revealed by atomic force microscopy (AFM) investigations. EDP determined from measured XRR data for 100 Å Nb and 100 Å Si deposited bilayer film shows that the width of Si-on-Nb interface is 10 Å. This observed width is smaller than the similar interface in the case of samples having an individual layer thickness of 35 Å. The corresponding interface width of Nb-on-Si is found to be 45 Å and marginally more than the similar interface in the case of the 35 Å Nb/35 Å Si bilayer samples. AFM studies carried out on 100 Å Nb and Si layers deposited separately on float glass substrate indicate similar gross as well as subtle morphological features and cannot be attributed to the observed asymmetry in this case. The observed asymmetry in EDP of two interfaces in this case is due to the enhanced diffusion of Si into the formed metal layer relative to the diffusion into the already deposited metal layer.
Keywords:NbSi bilayer   Surfaces and interface   Electron density profile   X-ray reflectivity   Atomic force microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号