首页 | 本学科首页   官方微博 | 高级检索  
     


Structural, optical and electrical properties of thermally evaporated Ag2S thin films
Authors:M.M. El-Nahass  E.M. Ibrahim
Affiliation:
  • a Department of Physics, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt
  • b Department of Physics, Faculty of Engineering, Ain Shams University, Cairo, Egypt
  • Abstract:Thin films of Ag2S are prepared on glass and quartz substrates by a thermal evaporation method. The structural studies show that the films are well crystallized with an acanthite structure. The optical properties of the films are investigated using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 500-2200 nm. The refractive index, n, and the absorption index, k, of Ag2S are determined from the absolute values of the measured transmittance and reflectance. The dispersion of refractive index in Ag2S is analyzed using the concept of the single oscillator. Within this concept the oscillator energy, E0, and the dispersion energy, Ed, can be determined as 5 and 32.5 eV, respectively. It is interesting to note that Ag2S appears to fall into the ionic class. The values of the lattice dielectric constant and the ratio of the carrier concentration to the effective mass are also determined as 7.77 and 1.7×1047 kg−1 m−3, respectively. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals an indirect allowed transition with a band gap of 0.96 eV and associated phonons of 0.05 eV. Measurements of the dark electrical resistivity is studied as a function of film thickness and temperature. The dark electrical resistivity decreases with increasing film thickness. Graphical representation of log ρ as a function of reciprocal temperature yields two distinct linear parts indicating the existence of two activation energies ΔE1 and ΔE2 as 0.18 and 0.28 eV respectively. Discussion on the obtained results and their comparison with the previous published data is also given.
    Keywords:Thermal evaporation   Silver sulphide   Single oscillator
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号