首页 | 本学科首页   官方微博 | 高级检索  
     

可控碳化废弃聚丙烯制备镍/碳纳米材料用于高效光蒸气转换
作者姓名:宋长远  郝亮  张博易  董志月  唐清泉  闵嘉康  赵强  牛冉  龚江  唐涛
作者单位:Key Laboratory of Material Chemistry for Energy Conversion and Storage;Department of Materials Science&Engineering;Department of Physics;State Key Laboratory of Polymer Physics and Chemistry
基金项目:supported by the Initiatory Financial Support from the Huazhong University of Science and Technology(3004013134);the National Natural Science Foundation of China(51903099);the Opening Fund of Hubei Key Laboratory of Material Chemistry and Service Failure(2019MCF01);the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences.
摘    要:利用太阳能实现光蒸气转化是一项极具前景的技术,可应用于海水脱盐和淡水制备等领域.然而,从工业的角度来看,制备低成本、高效率的光热材料仍具有挑战性.本文利用聚离子液体(PIL)和氧化镍(Ni O)作为复合催化剂,实现了聚丙烯(PP)的可控碳化,并制备了镍/碳纳米材料(Ni/CNM).研究结果表明,加入微量的PIL可实现对Ni/CNM形貌和织态结构的调控.Ni/CNM由杯状碳纳米管(CS-CNT)和梨形镍纳米颗粒组成,二者在太阳光吸收上的协同作用使得Ni/CNM具有优异的光热转换性能.此外,Ni/CNM具有较高的比表面积和丰富的微/介/大孔,其构建的三维多孔网络可为水和蒸气的高效传输提供通道.光吸收高、水传输快和热导率低等优势,使Ni/CNM的水蒸发速率高达1.67 kg m^-2h^-1,光-蒸气转换效率高达94.9%,且重复使用10次后性能依然保持稳定.该材料同时适用于染料废水、海水和油/水乳化液等水质的纯化.其中,海水中金属离子的去除效率高达99.99%,染料去除率>99.9%.更重要的是,材料的光蒸气转换性能优于最新报道的碳基光热材料.此工作不仅提出了一种可将废弃聚合物转化为先进的金属/碳杂化物的可持续方法,同时也有助于太阳能利用和海水淡化领域的进一步研究.

关 键 词:solar  vapor  generation  WASTE  polymer  controlled  CARBONIZATION  Ni/carbon  NANOMATERIAL  SYNERGISTIC  effect  PHOTOTHERMAL  materials

High-performance solar vapor generation of Ni/carbon nanomaterials by controlled carbonization of waste polypropylene
Authors:Changyuan Song  Liang Hao  Boyi Zhang  Zhiyue Dong  Qingquan Tang  Jiakang Min  Qiang Zhao  Ran Niu  Jiang Gong  Tao Tang
Affiliation:(Key Laboratory of Material Chemistry for Energy Conversion and Storage,Ministry of Education,Hubei Key Laboratory of Material Chemistry and Service Failure,School of Chemistry and Chemical Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Department of Materials Science&Engineering,National University of Singapore,Singapore 117576,Singapore;Department of Physics,Cornell University,New York 14853,USA;State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China)
Abstract:Solar vapor generation is emerging as a promising technology using solar energy for various applications including desalination and freshwater production.However,from the viewpoints of industrial and academic research,it remains challenging to prepare low-cost and high-efficiency photothermal materials.In this work,we report the controlled carbonization of polypropylene(PP)using NiO and poly(ionic liquid)(PIL)as combined catalysts to prepare a Ni/carbon nanomaterial(Ni/CNM).The morphology and textural property of Ni/CNM are modulated by adding a trace amount of PIL.Ni/CNM consists of cup-stacked carbon nanotubes(CS-CNTs)and pear-shaped metallic Ni nanoparticles.Due to the synergistic effect of Ni and CS-CNTs in solar absorption,Ni/CNM possesses an excellent property of photothermal conversion.Meanwhile,Ni/CNM with a high specific surface area and rich micro-/meso-/macropores constructs a threedimensional(3 D)porous network for efficient water supply and vapor channels.Thanks to high solar absorption,fast water transport,and low thermal conductivity,Ni/CNM exhibits a high water evaporation rate of 1.67 kg m^-2 h^-1,a solar-to-vapor conversion efficiency of 94.9%,and an excellent stability for 10 cycles.It also works well when converting dyecontaining water,seawater,and oil/water emulsion into healthy drinkable water.The metallic ion removal efficiency of seawater is 99.99%,and the dye removal efficiency is>99.9%.More importantly,it prevails over the-state-of-art carbonbased photothermal materials in solar energy-driven vapor generation.This work not only proposes a new sustainable approach to convert waste polymers into advanced metal/carbon hybrids,but also contributes to the fields of solar energy utilization and seawater desalination.
Keywords:
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号