首页 | 本学科首页   官方微博 | 高级检索  
     

多频段脑功能网络融合的阿尔茨海默病分类
引用本文:王中阳,信俊昌,汪新蕾,王之琼,赵越. 多频段脑功能网络融合的阿尔茨海默病分类[J]. 小型微型计算机系统, 2021, 0(1): 208-212
作者姓名:王中阳  信俊昌  汪新蕾  王之琼  赵越
作者单位:东北大学计算机科学与工程学院;东北大学医学与生物信息工程学院;辽宁省大数据管理与分析重点实验室;沈阳东软智能医疗科技研究院有限公司
基金项目:国家自然科学基金项目(61472069,61402089)资助;中国博士后科学基金项目(2019T120216,2018M641705)资助;中央高校基本科研业务费项目(N180101028,N180408019,N2019007,N2024005-2)资助。
摘    要:将图论与机器学习方法相结合的阿尔茨海默病计算机辅助中,脑网络的构建大多是基于滤波去噪后的全频段BOLD信号匹配,忽略了不同脑活动信息的差异.因此,本文提出了一种多频段脑功能网络融合模型.首先将离散小波变换应用于BOLD信号中,得到不同频域下的体素信号,而后计算同频信号的相关性,获取不同频段下相关矩阵.而后计算所有矩阵的网络特征,在特征选择后基于SVM对患者进行分类.从实验结果可以看出,分频下的脑功能网络特征与未分频网络相比能在一定程度上提高分类的准确性;体素级网络由于可以更加详细的表达脑网络的变化,其分类效果要优于脑区级.

关 键 词:阿尔茨海默病  图论  脑网络  体素  多频段

Alzheimer's Disease Classification Based on Multiband Fusion Brain Functional Network
WANG Zhong-yang,XIN Jun-chang,WANG Xin-lei,WANG Zhi-qiong,ZHAO Yue. Alzheimer's Disease Classification Based on Multiband Fusion Brain Functional Network[J]. Mini-micro Systems, 2021, 0(1): 208-212
Authors:WANG Zhong-yang  XIN Jun-chang  WANG Xin-lei  WANG Zhi-qiong  ZHAO Yue
Affiliation:(School of Computer Science&Engineering,Northeastern University,Shenyang 110169,China;College of Medicine and Biological Information Engineering,Northeastern University,Shenyang 110169,China;Key Laboratory of Big Data Management and Analytics(Liaoning Province),Shenyang 110169,China;Neusoft Research of Intelligent Healthcare Technology,Co.Ltd,Shenyang 110179,China)
Abstract:Alzheimer's computer aided diagnosis research,which combined graph theory with machine learning methods,the construction of brain network is mostly based on the full band BOLD signal matching after filtering and denoising,ignoring the differences of different brain activity information.Therefore,this paper proposes a multi band Fusion brain function network model.The discrete wavelet transform is applied to the BOLD signal to get the voxel signal in different frequency domain,and then the correlation of the same frequency signal is calculated to obtain the correlation matrix in different frequency domain.Then calculate the network features of all matrices,and classify the patients based on SVM after feature selection.From the experimental results,we can see that the features of brain function network under frequency division can improve the accuracy of classification to a certain extent compared with the network without frequency division;because voxel level network can express the changes of brain network in more detail,its classification effect is better than brain area level.
Keywords:Alzheimer's disease  graph theory  brain networks  voxel  multiband
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号