首页 | 本学科首页   官方微博 | 高级检索  
     

用于长期神经元放电记录的一体化可步进植入式神经电极
引用本文:张曦昊,詹阳. 用于长期神经元放电记录的一体化可步进植入式神经电极[J]. 集成技术, 2022, 11(6): 67-74
作者姓名:张曦昊  詹阳
作者单位:中国科学院深圳先进技术研究院 深圳 518055;中国科学技术大学纳米科学技术学院 苏州 215127
基金项目:国家自然科学基金项目(32070985);国家重点研发计划项目(2018YFA0701405)
摘    要:步进式电极是神经科学电生理记录的重要工具。传统电极支架的主要功能是电极丝支撑以及机械驱动电极丝的微推进。在慢性记录过程中,电极的位置可以推进到更深的脑组织中,从而记录更多的神经元放电活动。但传统电极支架制作和组装需要多个步骤和部件,组装过程烦琐困难、结构集成度低,且无法保证支撑板结构之间相互平行,增加了实验误差。该文提出一种可实现集成度高、结构稳定、组装容易的新型电极构架。与传统电极支架相比,新设计的电极支架具有更少的组件,且一体化的支架设计减少了不同支架之间的误差,有助于实验条件的统一。受力分析表明,该文提出的新电极具有优良的抗形变特性,且新电极比传统电极重量更小,可减轻实验小鼠头部负载压力。通过手术在小鼠大脑中植入电极,实验结果表明一体化记录电极可获得高质量的神经信号。因此,该文提出了一种新的电极设计思路,该思路有助于提高实验效率,并可应用于多种小动物在体电生理实验。

关 键 词:神经电极  3D 打印  电生理  神经元放电

An Implantable Movable Electrode with the Integrated Structure for Chronic Recordings of Spiking Neural Signals
ZHANG Xihao,ZHAN Yang. An Implantable Movable Electrode with the Integrated Structure for Chronic Recordings of Spiking Neural Signals[J]. , 2022, 11(6): 67-74
Authors:ZHANG Xihao  ZHAN Yang
Affiliation:Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215127, China
Abstract:Movable electrodes are important recording tools for in vivo electrophysiology in neuroscience. The traditional electrode holder supports the structure of the electrodes which can be mechanically moved. The entire electrode structure is manually assembled. During the chronic recordings, the electrode can be lowered towards deeper brain tissues so that more neurons can be recorded. However, the traditional electrode holder assembly requires multiple time-consuming steps with low-level component integration and multiple panel components are difficult to be aligned in parallel. Here, a novel eclectrode holder which consists of an intergrated design with fewer components and a stronger structues was designed. The new design reduces the differences between different electrodes and contributes to the standard experimental conditions. Simulation results show that the new electrode is resistant to deformation when the external force is applied. Compared with the traditional electrodes, the new electrode is lighter and helps reducing head loading pressure for experimental mice. Implantation of the electrode in the mouse brain demonstrates that it can obtain high-quality neural signals. Current reserach open new opportunities for improved experimental efficiency and the applications in various in vivo electrophysiology in small animals.
Keywords:neural electrode   3D printing   electrophysiology   neuron discharge
点击此处可从《集成技术》浏览原始摘要信息
点击此处可从《集成技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号