首页 | 本学科首页   官方微博 | 高级检索  
     


Well-defined phosphonated homo- and copolymers via direct ring opening metathesis polymerization
Authors:Bahar Bingö  l,Anja Kroeger,Patric Jannasch
Affiliation:1. Department of Chemistry, Polymer and Materials Chemistry, Lund University, P.O.B. 124, SE 221 00 Lund, Sweden;2. Max Planck Institute for Polymer Research, Ackermannweg 10, D-2128 Mainz, Germany
Abstract:Phosphonated polymers with a well-defined molecular weight, composition and architecture have been prepared via ring opening metathesis polymerization (ROMP) of phosphonated and non-phosphonated norbornene imides at room temperature for the first time. ROMP was proven to be living and versatile. This enabled preparation of a broad range of phosphonated homopolymers, statistical copolymers, AB diblock as well as ABA and BAB triblock copolymers based on poly(norbornene imide)s with low polydispersity (1.09–1.32). Complete hydrolysis of phosphonated poly(norbornene imide)s under mild conditions yielded the phosphonic acid derivatives. Thermogravimetric analysis indicated high thermal and thermo-oxidative stability of the polymers. Free standing and transparent films with good mechanical stability were obtained from the phosphonic acid functional homopolymers, diblock and triblock copolymers. Combining these basic properties with the advantages mentioned above makes ROMP a promising pathway for accessing a wide diversity of phosphonated macromolecular structures. These new phosphonated polymers will open new perspectives in advanced application areas, which require a high level of control over polymer structure.
Keywords:Block copolymers   Phosphonated norbornene imides   Ring opening metathesis polymerization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号