首页 | 本学科首页   官方微博 | 高级检索  
     


Computer Simulation of Final-Stage Sintering: I, Model Kinetics, and Microstructure
Authors:Gregory N Hassold    I-Wei Chen  David J Srolovitz
Affiliation:Department of Materials Science and Engineering, University of Michigan Ann Arbor, Michigan 48109–2136
Abstract:A Monte Carlo model for simulating final-stage sintering has been developed. This model incorporates realistic microstructural features (grains and pores), variable surface difusivity, grain-boundary diffusivity, and grain-boundary mobility. A preliminary study of a periodic array of pores has shown that the simulation procedure accurately reproduces theoretically predicted sintering kinetics under the restricted set of assumptions. Studies on more realistic final-stage sintering microstructure show that the evolution observed in the simulation closely resembles microstructures of real sintered materials over a wide range of diffusivity, initial porosity, and initial pore sizes. Pore shrinkage, grain growth, pore breakaway, and reattachment have all been observed. The porosity decreases monotonically with sintering time and scales with the initial porosity and diffusivity along the grain boundary. Deviations from equilibrium pore shapes under slow surface diffusion or fast grain-boundary diffusion conditions yield slower than expected sintering rates.
Keywords:sintering  computers  theory  grain growth  microstructure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号